Analysis of paired tumor and normal molecular phenotypes in TCGA

Andrew Gross TCGA Annual Meeting May 11, 2015

TCGA is a blessing and a curse

TCGA is a blessing and a curse

Blessing

- No platform left behind
- Unprecedented cohort sizes
- Panoramic view into the tumor's biology

TCGA is a blessing and a curse

Blessing

- No platform left behind
- Unprecedented cohort sizes
- Panoramic view into the tumor's biology

The PANCAN Curse

- Integrating data is hard
- Methods get very complicated very quickly

How do we break the PANCAN curse?

How do we break the PANCAN curse?

Simple models

"Simple models and a lot of data trump more elaborate models based on less data."

-Peter Norvig, Google Director of Research

How do we break the PANCAN curse?

Incremental and transparent methods

"I think you should be more explicit here in step two."

Study goals

Better understand the tumor phenotype.

Provide **scope** to molecular events often observed in specific tissue cohorts.

Study goals

Better understand the tumor phenotype.

Provide **scope** to molecular events often observed in specific tissue cohorts.

What do all cancers have in common?

What differentiates cancers?

Expression profile for single gene across PANCAN cohort

Fraction over-expressed: fraction of patients in a cohort with over-expression of a gene

Null Hypothesis: F_g = 50%, gene is unchanged in tumor cells

Advantages:

- Not sensitive to tissue-specific baseline expression
- Easy to interpret test statistic
- Easy to integrate across tissues, data-layers
- No statistical assumptions

Advantages:

- Not sensitive to tissue-specific baseline expression
- Easy to interpret test statistic
- Easy to integrate across tissues, data-layers
- No statistical assumptions

Disadvantages:

- Not sensitive to magnitude of differential expression
- Less Powered?

Advantages:

- Not sensitive to tissue-specific baseline expression
- Easy to interpret test statistic
- Easy to integrate across tissues, data-layers
- No statistical assumptions

Disadvantages:

- Not sensitive to magnitude of differential expression
- Less Powered?

What differentiates cancers?

- Methylation: 704 matched patients
- mRNA: 650 matched patients
- miRNA: 628 matched patients

Does this replicate?

8 microarray datasets, 923 subjects

Does this replicate?

8 microarray datasets, 923 subjects

What differentiates cancers?

Hypothesis:

Genes turned on in the tumors will have levels associated with tumor growth and proliferation.

What differentiates cancers?

What changes are tissue specific?

What changes are tissue specific?

MET is upregulated in 8% of breast cancers and 75% of other tumors.

What changes are tissue specific?

What changes are driver specific?

What changes are driver specific?

Summary

- We describe a simple analysis method for studying the tumor phenotype
- We define a list of differentially expressed genes, miRNA and methylation sites in a pancancer context
- We use these features to stratify patient outcomes and define tissue and driver specific changes in cancer

